If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-6h-10=0
a = 1; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·1·(-10)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{19}}{2*1}=\frac{6-2\sqrt{19}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{19}}{2*1}=\frac{6+2\sqrt{19}}{2} $
| 4x+3/4x=2x+17 | | 3y2-10y+3=0 | | 8x+5-4x=5x+x-3 | | 3x/2+1/2=4x/5-2x/15 | | 12x=6x+255.50 | | 2x=4x=90 | | u/7=17/13 | | 8b/19=54/19 | | (3+w)(4w+7)=0 | | 5/4+4m/5=61/20 | | 1/7x=17 | | 5+3/5x=6-2/3x | | 1/2b-16=-4 | | 8x=5x+177.50 | | 5+3/5x=6-2/3 | | x^2-4.2x+2.9=0 | | 3x-12=6x+8 | | 12y+6=6(2y+1 | | (1/x-5)+(6/x)=2 | | 8x^2=8-9x | | -3x+8=6x+9 | | 6d+8=14*3d | | 1+(x+2)+7x=4 | | |6x-8|=1 | | (1/x-2)+(3/x+6)=1/2 | | 6x^2-30x+42=0 | | n/2-1=n/5 | | x+2/3x+x/2=0 | | 30/60=x/20x= | | 3x-12=5+14x | | 2(2x+3)-2(x+5)=16 | | 3x-12=40+14x |